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Abstract—Distributed Hash Table (DHT) lookup is a core
technique in structured peer-to-peer (P2P) networks. Its decen-
tralized nature introduces security and privacy vulnerabilities
for applications built on top of them; we thus set out to design
a lookup mechanism achieving both security and anonymity,
heretofore an open problem. We present the design of Octopus,
which uses attacker identification mechanisms to discover and
remove malicious nodes, severely limiting an adversary’s ability
to carry out active attacks, and splits lookup queries over
separate anonymous paths and introduces dummy queries to
achieve high levels of anonymity. We analyze the security of
Octopus by developing an event-based simulator to show that
the attacker discovery mechanisms can rapidly identify mali-
cious nodes with low error rate. We calculate the anonymity of
Octopus using probabilistic modeling and show that Octopus
can achieve near-optimal anonymity. We evaluate Octopus’s
efficiency on Planetlab and show that Octopus has reasonable
lookup latency and low bandwidth overhead.
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I. INTRODUCTION

Structured peer-to-peer networks, such as Chord [1] or

Kademlia [2], allow the creation of scalable distributed

applications that can support millions of users. They have

been used to build a number of successful applications,

including P2P file sharing (Overnet, Kad, Vuze DHT1) and

content distribution (CoralCDN [3]), and many others have

been proposed, such as distributed file systems [4], anony-

mous communication systems [5]–[9], and online social

networks [10], [11]. At the heart of these networks lies a

distributed hash table (DHT) lookup mechanism that imple-

ments a decentralized key–value store. The DHT allows effi-

cient storage and coordination among very large collections

of nodes; however, its decentralized nature creates a number

of security and privacy vulnerabilities. Because peers have

to rely on other peers to determine the state of the network,

malicious nodes could provide misinformation to misdirect

an honest user’s lookups [12]. Likewise, nodes can profile

the lookup activities of other nodes and learn what files or

websites they are interested in or who their friends may

be. Recent research shows that anonymous communication

systems based on anonymity-deficient DHT lookups have

severe vulnerabilities to information leak attacks [13], [14].

1http://www.vuze.com/

To address these issues, our goal is to design a lookup

mechanism that achieves both security and anonymity

(where anonymity means no information is revealed about

which nodes are looking up which values), heretofore an

open problem. We note that security is a necessary condition

for anonymity, because without security, malicious nodes

can misdirect the lookup towards colluding nodes and learn

about the lookup target. On the other hand, security is not

a sufficient condition for anonymity. Some existing lookup

schemes designed to resist active attacks are not suitable to

build anonymous DHT systems, e.g., due to heavily relying

on redundant transmission that leaks information about the

lookup initiator and/or target [15]–[17]. Furthermore, even

with a secure lookup that itself does not cause information

leak, an inappropriate design of the DHT system can still

lead to anonymity vulnerabilities [14].

Our contributions in this work include:

1) We propose a suite of novel security mechanisms–

attacker discovery for DHT systems. Our mechanisms proac-

tively identify and remove malicious peers. We develop an

event-based simulator to show that our identification mecha-

nism is capable of rapidly discovering malicious nodes with

low error rate. For a network with 20% malicious nodes, it

can correctly identify all attacking nodes within 30 minutes.

We compare our scheme with Halo [16], a state-of-the-art

secure DHT system, and show that our scheme provides

better robustness against active attacks. Furthermore, our

design does not rely on redundant transmission, and thus

is suitable to construct anonymous DHT systems.

2) With the proposed security mechanisms, we put for-

ward a secure and anonymous DHT lookup Octopus. Octo-

pus splits individual queries used in a lookup over multiple

anonymous paths, and introduces dummy queries, to make

it difficult for an adversary to learn the eventual target of

a lookup. We use probabilistic modeling with the help of

simulation to calculate the information leak, so that users

can know how much anonymity can be actually provided

by the system. We show that Octopus provides near-optimal

anonymity for both the lookup initiator and target. In a net-

work of 100 000 nodes with 20% malicious nodes, Octopus

only leaks 0.57 bit of information about the initiator and

0.82 bit of information about the target; these are 4–6 times



better than what previous work [7], [8] was able to achieve.

3) For performance evaluation, we measure the lookup la-

tency of Octopus on Planetlab with 207 nodes, and compare

it with the base-line scheme Chord [1] and Halo [16]. The

lookup latency of Octopus is comparable to that of Chord,

and even better than that of Halo. While Octopus incurs

relatively higher communication overhead than Chord and

Halo to provide extra security and/or anonymity guarantees,

the bandwidth consumption of Octopus is still manageable

at only few Kbps for each node.

The remainder paper is organized as follows. Section II

presents the system model. We describe our security and

anonymity mechanisms in Sections III and IV, respectively.

The efficiency evaluation is provided in Section V and

Section VI presents the related work. We conclude in Section

VII.

II. SYSTEM MODEL

A. Threat Model

In the same vein as previous work [5]–[9], [17], [18], we

do not consider a global adversary that is capable of con-

trolling the whole network and observing all communication

traffic. Such a global adversary seems impractical in large-

scaled P2P networks. Instead, we assume a partial adversary

that controls a fraction f of all nodes in the network (f is

typically assumed to be up to 20%). Malicious nodes can

behave in an arbitrarily malicious way, such as intercepting,

modifying, or dropping any messages going through them, or

injecting fake messages to any other nodes. We also assume

that malicious nodes can log any messages they have seen

and have access to a high-speed communication channel to

share any information with very low transmission delay.

Also similar to previous work, we do not attempt to solve

the problem of the Sybil attack [19] in this work. Defending

from a Sybil attack is an interesting research area that has

drawn a lot of attentions; a number of effective solutions

have been proposed, such as [20]–[22] and may be possible

to integrate into the Octopus design as an extension.

B. Design Goals

The major goal for security is to avoid lookups being

biased by malicious nodes. In other words, given a lookup

target, it should not be possible to misdirect the lookup path

or bias the final lookup result.

Pfitzmann and Hansen defined several relevant anonymity

properties for message-based communication, such as sender

and receiver anonymity [23]. We consider equivalent prop-

erties in the context of DHT lookups.

• Initiator anonymity: given a lookup target, it should not

be possible to determine its initiator.

• Target anonymity: given a lookup initiator, it should not

be possible to determine its target.

• Query unlinkability: given several queries with known

targets, it should not be possible to find out if they came

from the same initiator.

III. SECURITY MECHANISMS OF OCTOPUS

A. Problem Description

In a DHT system, like Chord [1], each node is assigned a

unique ID associated with its IP address, and owns the IDs

from itself to its direct predecessor on the ring. Each node X

maintains a list of Θ(logN) contact nodes (called fingers),

where N is the network size, and the i-th finger of X is

the owner (or successor) of the ID idX + 2i−1 (the first

finger, i.e., i = 1, is X’s direct successor). Besides, each

node maintains a list of successor nodes for stabilization.

Some DHTs [24] also utilize the list of successors during

lookups to speed up the lookup process in the last few hops.

We study the more general case where the successor lists

are used in lookups. We refer to the combination of the

fingertable and the successor list as the routing table. More

specifically, we consider the following lookup procedure.

Assuming a lookup initiator I wants to find the owner of

value v, it first queries n1, the node that is closest to v in

its routing table, and n1 sends its routing table to I .2 Then

out of n1’s routing table, I finds the node n2 closest to

v and asks n2 for its routing table. The process iteratively

proceeds until reaching nk, for which one of its successors

is the owner of v (i.e., the lookup target).

Some of the queried nodes could be malicious and attempt

to launch the following attacks.

1) Lookup Bias Attack: If the last queried node nk is

malicious, it can replace the honest nodes in its successor

list with malicious nodes, so that one of its (malicious)

“successors” will be concerned as the lookup target.

2) Lookup Misdirection Attack: Instead of trying to bias

the lookup result, malicious nodes could attempt to make I

query more malicious nodes during the lookup, by providing

manipulated fingertables (i.e., replacing honest fingers with

malicious nodes). This attack is a big threat to anonymity

since the adversary can learn more information about the

lookup target from a larger number of queried malicious

nodes [14].

3) Finger Pollution Attack: In a DHT system, each node

periodically performs lookups to update its fingers. An attack

related to this is that malicious nodes could attempt to

pollute honest nodes’ fingertables during the finger-update

lookups, so that the polluted fingertables can contribute to

the lookup bias and misdirection attacks.

2In vanilla DHT lookups, I tells v to each queried node, which will
return the finger closest to v; however, this reveals the lookup target to
malicious intermediate nodes. Hence, for anonymous lookups, I asks each
intermediate node for its full routing table, without revealing v.



B. Security Mechanisms

Many existing secure DHT designs [6], [15], [16] employ

redundant queries or lookups to tolerate misinformation

provided by malicious nodes. However, the redundant trans-

mission creates more opportunities for an adversary to gain

information about the lookup initiator and/or target [13].

Some schemes [17], [18] utilize quorum-based topologies

and threshold cryptography to limit Byzantine adversaries,

but they also require the initiator to contact multiple nodes

at each step of the lookup (for cryptographic operations),

which accelerates information leaks. Myrmic [25] prevents

routing table manipulation by introducing a central trusted

authority to sign each node’s routing table; however, this

approach is impractical since for each node join or churn,

the authority has to regenerate the signatures for all related

nodes, rendering a performance bottleneck.

To effectively limit active attacks while minimizing in-

formation leaks, we propose a new defense strategy by

letting each (honest) node secretly check the correctness

of other nodes’ routing tables. Such checks are preformed

offline (i.e., independent of lookups), and thus do not reveal

any information of lookups. To punish discovered malicious

nodes, we use a certificate authority (CA) to issue certificates

and revoke certificates from identified malicious nodes so

that the malicious nodes can be gradually removed from the

system. We note that the CA in our case is fundamentally

different from that of Myrmic [25]. The latter is required

to be online all the time and needs to update signatures

for multiple nodes for each node churn/join. Whereas, the

certificates in our scheme are independent of nodes’ routing

states and thus do not need to be updated frequently. Our

simulation results show that the workload of our CA is

sufficiently low and can be handled by a modestly powerful

server.

There has been several fairly efficient and scalable revo-

cation mechanisms in the literature, such as Merkle Hash

Tree based certificate revocation [26], efficient distribution

of revocation information over P2P networks [27], and

scalable PKI based on P2P systems [28]. Since certificate

management in our scheme is essentially the same as these

systems, we do not specifically study certificate revocation

in this work.

1) Secret Neighbor Surveillance: To limit the lookup bias

attack, we propose secret neighbor surveillance, a mecha-

nism that prevent malicious neighbors from manipulating

their successor lists.

In particular, we let each node maintain a predecessor

list, in the same way as maintaining the successor list

(i.e., periodically running Chord stabilization protocol anti-

clockwise). The predecessor list is of the same size as the

successor list, and thus each node X should be contained in

the successor list of any of its predecessors. In other words, if

X is not contained in the successor list of its predecessor, it

means this predecessor is trying to manipulate its successor

list by replacing X with another node. Our goal is to let X

detect this.

P1
P2

X

P3's succ-list

P2

P1

P3

X

Figure 1: Secret neighbor surveillance. X is checking if itself is
included in its predecessor P3’s successor list. If not, it means P3

manipulates its successor list by replacing X with another node.

In the lookup bias attack, a malicious node provides a

manipulated successor list in response to lookup queries.

Therefore, we let X anonymously sends a “lookup query”

to one of its predecessors, say P3 (see Figure 1), and

checks if itself is included in P3’s successor list. Anonymity

is required since if the malicious node can distinguish a

testing query from real lookup queries based on the querier’s

identity, it can always provide the correct successor list

for testing queries to avoid being detected. The anonymous

transmission can be achieved by using the basic onion

routing technique [29], i.e., X chooses two randomly peers

as relays to forward its query to P3 while using onion

encryption to ensure each hop on the forwarding path

can only know its previous and next hops. The two relay

nodes can be found by performing a l-hop random walk

on the overlay network (where l = Θ(logN)). Due to

space limitation, we refer interested readers to our technical

report [30] for the details of the random walk process.

X performs the above checks from time to time (i.e.,

with time interval tc ∈R (0, Tm] where Tm is the maximum

checking interval) on randomly selected successors. A de-

tected malicious node will be reported to the CA. To provide

a non-repudiation proof on a manipulated successor list (i.e.,

verifiable to the CA), we let each node sign its routing table

and attach a time stamp to it.

Another strategy to launch the lookup bias attack is to

pollute honest nodes’ successor lists during stabilization. For

example, as shown in Figure 2, assuming P2 is malicious

and P3 is honest, P2 can send P3 a manipulated successor

list excluding X during P3’s stabilization, so that P3 will

concern X as dead and remove X from its successor list;

consequently, P3 will be mistakenly identified as a malicious

successor by X and P2 will still be uncovered. To deal

with this, we let each node sign its successor list used

in stabilization; also, each node keeps a queue of latest

received successor lists in stabilization as proof, to prove

that its successor list is not intentionally manipulated. For
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Figure 2: Successor list pollution. The malicious successor P2

pollutes P3’s successor list in P3’s stabilization by providing a
manipulated successor list.

example, P3 can provide its proof to the CA showing

that its successor list is correctly computed according to

the information provided by P2. If P3’s proof is verified

(according to the stabilization algorithm) by the CA, then

the suspicion on P3 is cleared and the CA will request P2

for its proof, and check it against P3’s proof. This process

is repeated until finding a node that cannot provide valid

proofs and this node is then judged as the malicious node.

2) Secret Finger Surveillance: Likewise, we propose a

secret finger surveillance mechanism for the lookup misdi-

rection attack by limiting malicious nodes from manipulating

their fingertables in the lookup.

Y

P1'

P2'

F

F'

Ideal 
finger ID

X

Pred-list of F'

P1'
P2'

Routing 
table of P1'

True finger

Figure 3: Secret finger surveillance. X is checking if node Y has
replaced its finger F with a malicious node F

′. X first asks F ′ for
its predecessor list, and then anonymously sends a “lookup query”
to a random node P1 in F

′’s predecessor list. If any node in P1’s
successor list is closer to the ideal finger ID than F ’, X detects Y

manipulated its fingertable.

In particular, we let each node keep a small number of

received fingertables (e.g., from lookups, secret neighbor

surveillance, or random walks). From time to time, node X

chooses a random finger from one of the kept fingertables,

say the i-th finger F ′ of node Y , and asks F ′ for its

predecessor list (see Figure 3). Then, after waiting a short

random period of time, X anonymously sends a “lookup

query” to a random predecessor of F ′ (say P ′
1), and checks

if any node in P ′
1’s successor list is closer to the ideal finger

ID than F ′ (i.e., F ′ is not the true finger F ).

The intuition behind this is that if Y replaces a honest

finger F with a malicious node F ′, at least one of F ′’s (true)

predecessors should be closer to the ideal finger ID than F ′.

Hence, if F ′ provides X with its true predecessor list, the

fingertable manipulation will be detected. Therefore, F ′ has

to manipulate its predecessor list to ensure that all the “pre-

decessors” are malicious, so that the selected predecessor P ′
1

can collude with F ′ by providing a manipulated successor

list that is consistent with the predecessor list provided by

F ′. On the other hand, however, P ′
1 cannot freely manipulate

its successor list, since P ′
1 is under surveillance by its

neighbors (i.e., secret neighbor surveillance). Therefore, if

the adversary tries to manipulate a single finger (F → F ′),

she has to sacrifice at least one malicious node, either P ′
1 or

F ′ and Y .

3) Secure Finger Update: We can invoke the secret finger

surveillance to limit the finger pollution attack: when X

obtains the result (say F ′) of the finger-update lookup, it asks

F ′ for its predecessor list, and chooses a random predecessor

P ′
1 of F ′ to perform the same checks as in the secret finger

surveillance to verify F ′ is the true finger; X uses F ′ to

update its fingertable only when F ′ passes these checks.

C. Security Evaluation

We use the following metrics to evaluate our security

mechanisms.

• fraction of remaining malicious nodes,

• false positive rate, i.e., the chance that a honest node

is judged as a malicious node,

• false negative rate, i.e., the chance that a malicious

node is not identified when being tested by a node,

• false alarm rate, i.e., the chance that there is no node

identified in a report sent to the CA.

These metrics represent different aspects of security prop-

erties. Reduction of malicious nodes shows effectiveness,

false positive/negative rates represent accuracy, and false

alarm rate indicates efficiency.

1) Experiment Setup: We developed an event-based sim-

ulator in C++ with about 3.0 KLOC. We consider a WAN

setting, where latencies between each pair of peers are

estimated using the King dataset [31]. We model node

churn/join as an exponential distribution process f(x) =
λe−(1/λ)x with mean life time λ minutes. We generate

random network topologies of size N = 1000 with 20%

malicious nodes. Each node maintains 12 fingers and 6

successors/predecessors (on the order of Θ(logN)). With

similar configurations as related work [1], [9], we let each

node run successor and predecessor stabilization protocols

every 2 seconds, and performs finger update every 30 sec-

onds. To discover malicious nodes, each peer performs secu-

rity checks of secret neighbor surveillance and secret finger

surveillance every 60 seconds3. To ensure high identification

3This is based on the frequency of stabilization and finger update as well
as the node churn rate, and we found that doing security checks every 60s
is sufficient to rapidly discover malicious nodes.
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Figure 4: Simulation results of the security mechanisms

accuracy, each node keeps 6 latest received successor lists as

proofs. We let each node perform one lookup every minute

(we choose 1 min only because we want to test a large

number of lookups within a relatively short simulation time).

2) Experimental Results: We see from Figure 4a that the

secret neighbor surveillance mechanism can rapidly identify

malicious nodes that try to bias lookups. After a short time

(20 mins), almost all malicious nodes are discovered. In

comparison, the speed of discovering malicious nodes by

the secret finger surveillance mechanism is relatively slower

(as shown in Figure 4b), but still it can identify over 80%

malicious nodes within 30 mins. The speed of identifying

malicious nodes by the secure finger update mechanism is

faster than that of the secure finger surveillance (as shown in

Figure 4c), because the former is performed more frequently

(at each finger update) and some malicious fingers contained

in the successor list can also be detected by the secret

neighbor surveillance.

The accuracy of our attacker discovery mechanisms is

shown in Table I. The false positive rate is 0 for all the three

mechanisms even when the churn rate is very high (e.g.,

the mean life time for each node is 10 mins). This ensures

that honest nodes will not be judged as malicious nodes

by mistake. In addition, the secret neighbor surveillance

has very low false negative rate (less than 0.6%), which

implies that any malicious nodes that try to bias lookups

can be caught with high probability. We also see that

the false negative rates for the secret finger surveillance

and secure finger update mechanisms are relatively higher.

This is because a malicious finger can pass the security

checks if the randomly selected predecessor happens to be

a colluding node and provides a successor list consistent

with the malicious finger. However, over time, a malicious

node can be identified with very high probability as shown

in Figure 4.

We also compare our scheme with a state-of-the-art secure

DHT scheme Halo [16] in terms of the number of biased

lookups over time. We calculate the ratio of biased lookups

of Halo according to their analysis results [16] §4.1 using the

parameter l = 7 as they suggested. We can see from Figure 5

that after a short period of time, there are no more biased

lookups in Octopus, while the number of biased lookups

of Halo keeps increasing linearly with the total number of

lookups. This demonstrates that our security mechanisms

can fundamentally thwart active attacks.
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Figure 5: Security comparison

Finally, we evaluate the workload of the CA in terms of

the number of messages (including reports, proofs, and etc)

processed over time. We can see from Figure 6 that even

during the peak time (the first 10 min), the CA only needs

to process about 2 messages per second on average.
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Figure 6: The CA’s workload

IV. ANONYMITY MECHANISMS OF OCTOPUS

A. Problem Description

In vanilla DHT systems, since the lookup initiator I

queries intermediate nodes directly, the queried nodes can

easily infer the I’s identity. A natural idea to let I hide its

identity by sending queries through an anonymous path, as

in attacker identification mechanisms. An illustration of this

is shown in Figure 7.



Table I: False positive/negative/alarm rates of the security mechanisms. λ is mean life time of each node (in minute). Attack rate is 100%.
In fingertable manipulation/pollution attacks, checked malicious predecessors provide manipulated successor lists with 50% chance.

Security mechanisms
False Positive False Negative False Alarm

λ = 60m λ = 10m λ = 60m λ = 10m λ = 60m λ = 10m

Secret neighbor surveillance 0 0 0 0.52% 0 0.52%

Secret finger surveillance 0 0 14.02% 19.55% 0.18% 1.55%

Secure finger update 0 0 14.08% 18.48% 0.33% 2.18%

 
B

I

A

E1

E2

E3E4T

Estimated range of T

Figure 7: T is the lookup target, I → A → B is the anonymous
path, and Ei’s are queried nodes.

However, we note that a single anonymous path is in-

sufficient to achieve high levels of anonymity. We use the

example in Figure 7 to show this. Assume queried nodes

E2 and E4 are malicious, and the first relay A is also

malicious. With a single anonymous path, the adversary can

learn that E2 and E4 belong to the same lookup since they

are contacted by the same exit node B. Wang et al. [14]

have shown that based on the positions of a few queried

malicious nodes in the lookup, the adversary can narrow the

range of the lookup target into a small set of nodes (called

range estimation attack). Suppose there are c concurrent

lookups each having an estimation range of d nodes; then,

the adversary can know that I is doing an lookup and its

target is one of the c · d nodes.

B. Anonymity Mechanisms

To address the limitation of a single anonymous path, we

propose to split lookup queries over multiple anonymous

paths, as shown in Figure 8.

I A B

C3

C4

C2

C1

D3

D4

D2

D1

E3

E4

E2

E1

Figure 8: The structure of multiple anonymous paths in Octopus.
A, B, Ci and Di are relays.

Using separate anonymous paths for different queries

effectively disassociates the adversary’s observations. The

adversary only sees disjoint events from different concurrent

lookups, but is unable to group queries belonging to the same

lookup; in this case, it is much harder to apply the range

estimation attack, thus substantially limiting the information

leak.

Moreover, to further blur the adversary’s observations and

make the range estimation attack even harder, we propose to

add dummy queries in the lookup. Then, even though in rare

cases the adversary can link two queried nodes in the same

lookup (e.g., when all the relays used for the two queries are

malicious), the adversary is unable to tell whether they are

dummy queries or true queries, and the result of the range

estimation attack would be incorrect with a dummy query.

We note that using multiple anonymous paths is important

to ensure effectiveness of dummy queries, because in the

single-anonymous-path scenario, observed queries are link-

able due to the common exit relay and hence dummy queries

can be distinguished based on the positions of observed

queries. In comparison, with multiple anonymous paths,

identifying dummy queries is much harder.

C. Anonymity Evaluation

We analyze the best strategies for an adversary to infer the

lookup target T and the initiator I based its observations,

and calculate the target anonymity H(T ) and the initiator

anonymity H(I). We use entropy to quantify H(T ) and

H(I). We let O denote the set of possible observations of

the adversary (including null observation). To measure the

system as a whole, we have:

H(T ) =
∑

o∈O

P (o)·H(T |o), H(I) =
∑

o∈O

P (o)·H(I|o) (1)

where P (o) is the probability of observation o occurring.

To calculate the maximum information leak, we make the

following assumptions in the anonymity calculation. First,

we assume the network is static, since network dynamics

can obscure the adversary’s observations and make it more

difficult to extract information about the initiator/target.

Second, we only consider passive attacks, as active attackers

can be quickly identified by our security mechanisms and

consequently the adversary will lose observers to carry out

passive attacks.

D. Anonymity Calculation

Due to space limitation, we only provide the outline of

calculating the initiator anonymity. We refer interested read-

ers to [30] for detailed anonymity calculation and analysis.
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Figure 9: Anonymity evaluation of Octopus. a is the concurrent lookup rate.
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Figure 10: Anonymity comparison. a = 1%.

To calculate the initiator anonymity, we divide the obser-

vations of the adversary into two categories.

• on: the observation occurring when T is not observed

• Oo: the set of observations occurring when T is ob-

served

According to 1, H(I) is calculated as:

H(I) = P (on) ·H(I|on) +
∑

oo∈Oo

P (oo) ·H(I|oo) (2)

When T is not observed, the entropy of I is maximized.

Presuming that the adversary can exclude malicious nodes

from the anonymity set of I , we have:

H(I|on) = log2 ((1− f) ·N) (3)

Let Rl
T denote the set of non-dummy queries linkable to

I in the lookup whose target is T . Then, based on whether

Rl
T is an empty set, we calculate H(I|oo) as follows:

H(I|oo) = P (Rl
T = ∅) ·H ′(I|oo)

+ (1− P (Rl
T = ∅)) ·H ′′(I|oo) (4)

When there is no linkable non-dummy query, I is un-

linkable with T . However, since some of the initiators of

concurrent lookups can be observed by the adversary, we

have:

H ′(I|oo) = P (I obsv) · log2(#obsv hon init)

+ (1− P (I obsv)) · log2((1− f) ·N) (5)

Let Ψl denote the set of concurrent lookups that have at

least one linkable query, and ψT denote the lookup with

target T . When Rl
T 6= ∅, ψT ∈ Ψl. Each lookup in Ψl is

possible to be ψT . Therefore, we have:

H ′′(I|oo) = −
∑

ψ∈Ψl

P (ψ = ψT |oo) · log2 P (ψ = ψT |oo)

(6)

Because the density of queries close to the target is

higher than other regions on the ring, for ψT it is highly

likely that the last queried node in Rl
T is located very

close to T . Therefore, the adversary can assign probability

to each candidate initiator based on the minimum distance

(i.e., number of hops) between its queried nodes and T . In

particular, let Ql
ψ denote the set of linkable queries in ψ,

ψ ∈ Ψl, and let ξ(x) denote the probability that for ψT
the minimum distance from linkable queried nodes to T is

x. ξ(x) can be obtained via pre-simulations of the lookup.

Then, we can calculate P (ψ = ψT |oo) as follows:

P (ψ = ψT |oo) ≈
ξ(minE∈Ql

ψ
dist(E, T ))

∑
ψ′∈Ψl ξ(minE′∈Ql

ψ′

dist(E′, T ))
(7)

E. Results and Comparisons

We developed a simulator for anonymity measurements

in C++ with about 1.3 KLOC. The results are shown in

Figure 10. With network size N = 100 000, concurrent

lookup rate a = 1%, f = 20% malicious nodes, and 6

dummies, Octopus only leaks 0.57 bits of information about

the initiator and 0.82 bits of information about the target. We

compare Octopus with the base-line scheme Chord [1] and



Table II: Performance comparison. τ is the time interval between
two consecutive lookups.

Schemes
Lookup Latency (sec) Bandwidth Consumption (Kbps)
Mean Median τ = 5min τ = 10min

Octopus 2.15 1.61 5.91 4.30

Chord [1] 1.35 0.35 0.29 0.28

Halo [16] 6.89 1.79 0.71 0.37

the state-of-the-art anonymous DHT lookups NISAN [7] and

Torsk [8] (we do not explicitly compare Octopus with secure

DHTs such as Halo [16], since they leak more information

than Chord.). We can see that in the same setting, NISAN

and Torsk leak about 3.3 bits of information about the

initiator, which is about 6 times more than Octopus. As for

the target anonymity, the information leak for NISAN and

Torsk is 11.3 bits and 3.4 bits, which is 13 times and 4 times

more than that of Octopus, respectively.

V. PERFORMANCE EVALUATION

A. Lookup Latency

Lookup latency is one of the most important performance

factors for DHT systems. We measure the lookup latency of

Octopus using PlanetLab with 207 randomly selected nodes.

We use boost C++ library4 (mainly UDP asynchronous

read/write of Boost.Asio) to build the communication sub-

strate. We let each node perform 2000 lookups indepen-

dently using randomly picked lookup keys. For each lookup,

we record the latency from the time of sending out the first

query till the time of receiving the lookup result.
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Figure 11: Comparison of lookup latency on Planetlab.

For comparison, we use the same methodology to im-

plement Chord [1] and Halo [16], and measure their lookup

latencies in the same network environment. We choose Halo

because it is one of the state-of-the-art secure DHT lookup

schemes and it is also based on Chord overlay. For Halo,

we use degree-2 recursion with redundant parameter 8× 4,

as suggested by Kapadia and Triandopoulos [16] to provide

fairly strong security guarantee. The experimental results are

presented in Figure 11 and Table II. We can see that while

the lookup latency of Octopus is relatively longer than that of

Chord due to more transmission for security and anonymity

needs, it is smaller than that of Halo, which only provides

4www.boost.org

security guarantees. The performance advantage is because

Octopus does not rely on redundant lookups, while in Halo a

lookup is not completed until all redundant lookups’ results

are returned.

B. Bandwidth Overhead

We also compare Octopus with Chord and Halo in terms

of bandwidth cost. We adopt the same configuration as

described in Section III-C1 for each of the DHT lookups,

and consider an overlay network with 1 000 000 nodes5.

We can see from Table II that Octopus does incur higher

communication overhead than Chord and Halo, in order to

achieve high levels of anonymity; however, the bandwidth

cost of Octopus is still reasonable (only a few Kbps),

which is affordable even for low-end clients with limited

bandwidth.

VI. RELATED WORK

A. Secure DHT Lookups

A major school of proposals to securing DHT lookups

uses redundancy. Castro et al. [15] proposed a robust

DHT system that relies on redundant lookups. Each key

is replicated among several replica nodes (typically the

neighbors of the key owner). Instead of doing a single

lookup, the initiator performs multiple redundant lookups

towards all the replicas. The lookup result would be correct

as long as one of the redundant lookups is not biased. The

limitation of this approach is that the redundant lookups

tend to converge to a small number of nodes close to the

target, and one malicious node in this set could infect many

redundant lookups. Much subsequent work (such as [6],

[16], [32]) focuses on disentangling the redundant lookup

paths to provide better security. Cyclone [32] partitions

nodes into r Chord sub-rings based on similarity of node

IDs, and has r redundant lookups routed through the r sub-

rings independently. Salsa [6] uses a new virtual-tree-based

DHT structure, in which any two nodes share few global

contacts so that redundant messages can proceed along

different paths. Halo [16] does not change the underlying

DHT structures, but uses the original Chord overlay and

performs redundant searches towards knuckles — nodes that

have fingers pointing to the target.

While effective in ensuring security, these redundant-

lookup-based approaches are incapable of preserving

anonymity, since redundant transmission creates opportuni-

ties for an adversary to gain information about the lookup

initiator and/or target [13]. ShadowWalker [9] embeds re-

dundancy into the DHT itself and uses shadows (nodes in

5We use the following parameters to estimate the bandwidth overhead.
Each routing state item (such as fingers or successors) is 10 bytes. We use
ECDSA signature (40 bytes) for authentication with a 4-byte timestamp,
and AES-128 for onion encryption. Each certificate is 50 bytes, including
the node’s IP address (6 bytes), the node’s public key (20 bytes), expire
time (4 bytes), and the CA’s signature (20 bytes).



redundant topologies) to verify each step of a lookup. Un-

fortunately, Schuchard et al. [33] found that ShadowWalker

is vulnerable to eclipse attack, where the entire set of

shadows of a certain node are compromised, leading to

other nodes’ routing states being infected. They also showed

that increasing the dimension of redundant topologies can

mitigate the eclipse attack, but at a higher performance cost.

Another major school of research on secure DHT lookups

leverages cryptographic techniques. Myrmic [25] uses an

online certificate authority to sign each node’s routing state.

The major limitation of Myrmic is that for each node

join/churn, the central authority has to update the certifi-

cates for all related nodes. Young et al. [17] proposed two

schemes RCP-I and RCP-II that use threshold signature and

distributed key generation to avoid the reliance of a central

authority. In their schemes, the verification information on

each message is collaboratively generated by a threshold

number of nodes, rather by a central authority.

All these secure DHT lookup schemes are not designed

to preserve anonymity. Lookup keys are revealed during

queries, and identities of lookup initiators are easily exposed

due to directly contacting intermediate nodes.

B. Secure and Anonymous DHT Lookups

NISAN [7] is among the first to try to provide both

security and anonymity guarantees in DHT systems. For

security purpose, each queried node is required to provide

its entire fingertable, so that the lookup initiator can apply

bound checking on it to limit manipulation of fingerta-

bles. NISAN also uses redundancy to enhance security.

The authors proposed a greedy search mechanism to query

multiple nodes at each step and combine the query results

to tolerate misinformation. On the other hand, acquiring

the entire fingertable also helps protect the anonymity of

lookup targets, since the lookup keys are not revealed to

intermediate nodes. Nevertheless, NISAN can only provide

very limited anonymity protection. Wang et al. [14] showed

that a passive adversary is able to narrow the range of a

lookup target down to a small number of nodes, by analyzing

the locations of observed queries (called a range estimation

attack).

Torsk [8] is a DHT-based anonymous communication sys-

tem. A key component of Torsk is a proxy-based anonymous

DHT lookup. The idea is that a lookup initiator performs

a random walk on the overlay to find a random node

(called buddy), and requests the buddy to perform the lookup

on its behalf. Because Torsk uses Myrmic [25] to secure

lookups, it has the same limitation as Myrmic — requiring

an online central authority to sign each node’s routing state.

In addition, as we analyzed in Section IV-A, a single proxy

structure is insufficient to provide high levels of anonymity:

the information learned by the range estimation attack can

be used to launch relay exhaustion attack [14].

Recently, Backes et al. [18] proposed to leverage oblivious

transfer to add query privacy to RCP-I and RCP-II [17].

However, for similar reasons as NISAN, this scheme is

vulnerable to the range estimation attack, since the initiator

needs to contact multiple intermediate nodes at each step of

the lookup.

Freenet [34] is a deployed P2P system, which allows

people to upload sensitive files to the overlay and employs

data duplication strategies to make them hard to block.

Freenet aims to preserve the publishers’ privacy, but does

not provide anonymity in lookups. Vasserman et al. [35]

create a membership concealing overlay network (MCON)

for unobservable communication. They aim to make it

difficult for either an insider or outsider adversary to learn

the set of participating members. This is similar to previous

darknet designs [36]. However, MCON and darknets are not

designed to provide anonymity.

VII. CONCLUSION

In this paper, we presented Octopus, a new DHT lookup

that provides strong guarantees for both anonymity and

security. Octopus ensures security and anonymity via three

fundamental techniques. First, Octopus constructs an anony-

mous path to send lookup query messages while hiding

the initiator. Second, it splits the individual queries used

in a lookup over multiple paths, and introduces dummy

queries, to make it difficult for an adversary to learn the

lookup target. Third, it uses secret security checks to identify

and remove malicious nodes. We developed an event-based

simulator, and showed that malicious nodes can be quickly

identified with high accuracy. In addition, via probabilistic

modeling and simulation, we showed that Octopus can

achieve near-optimal anonymity for both the lookup initiator

and target. We also evaluated the efficiency of Octopus on

Planetlab, and showed that Octopus has reasonable lookup

latency and communication overhead.
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